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Safety ResearchSafety Research

Predicting
Incident Rates

Artificial intelligence as a forecasting tool
By Abdullah Al-Mutairi and Joel M. Haight

PREDICTING THE FUTURE in any discipline is dif-
ficult, yet great strides have been made in many
areas. Although investing in the stock market may
not always deliver the expected profits, people still
invest. Although a company may not sell as many of
its products as predicted, production run sizes are
still based on forecasted demand. Weather forecasts
are a common source of complaints, yet people con-
tinue to watch the weather reports when planning
activities. The safety community, however, does not
seem ready to embrace the prediction of incident
rates as anything meaningful.

Safety can be an expensive aspect of industrial
operations unless efforts are made to enhance and
optimize programs to reduce the long-term cost asso-
ciated with SH&E-related incidents and damage. The
objective of an SH&E program is to minimize or pre-
vent loss involving people, the environment, proper-

ty and profits.
One step toward achieving

this objective would be to
quantify and analyze inter-
vention activity and incidents
for an existing SH&E pro-
gram. Using neural networks,
a form of artificial intelligence,
the researchers attempt to
determine and identify a rela-
tionship between safety inter-
ventions and incident rate.
Once the relationship has been
established, the analyst would
be able to use it as a forecast-
ing tool to predict future inci-
dent rates given the level of
safety intervention activities.

An artificial neural network
(ANN) is an information pro-
cessing prototype that mimics
to some extent the way biolog-
ical nervous systems such as

the brain process information. According to the
Defense Department’s Advanced Research Projects
Agency (DARPA) Neural Network Study (1988), “a
neural network is a system composed of many sim-
ple processing elements operating in parallel whose
function is determined by network structure, connec-
tion strengths, and the processing performed at com-
puting elements or nodes.”

In this study, incidents recorded were comprised
of physical injuries to workers in the forestry division
of a utility company, as well as spills and equipment
failure. While an ANN is a complex concept with
respect to how it works, it is not so difficult to use
from a practical point of view. Essentially, an ANN’s
operating objective is to recognize patterns. Any
input-output experimental model that uses input
data and generates output results can be analyzed
using ANN.

Patterns of output data variation in response to
input data variation can become too difficult for the
naked eye to recognize or to parse out an individual
effect. This is especially true when many variables
are involved. Through a series of software, networks
or pathways, the pattern of each input-output data
run is plotted and remembered. The resulting output
response is noted during training of the ANN. When
a similar input pathway comes up, the system looks
for a response (incident rate) that is similar to what it
saw under similar input conditions. This then
becomes the prediction.

This research is a continuation of work by Haight,
Thomas, Smith, et al. (2001a, b) and Iyer, Haight, Del
Castillo, et al. (2004; 2005), which focused on quanti-
fying safety intervention activities with the incident
rate. It is based on the relationship between four
safety intervention factors that are considered
inputs; the incident rate is the only output. Figure 1
is a graphical representation of the model estab-
lished by Haight, et al. (2001) that lays the founda-
tion for quantifying safety intervention activities
with the incident rate.
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well as optimize an SH&E program by minimizing
manpower input while concurrently minimizing
incidents. This group also produced a forecasting
tool that would predict the incident rate given a set
of safety intervention inputs. They determined that
the carryover effect of an incident rate in a particular
week had a statistically significant relationship with
the safety intervention activity levels.

They also developed forecasting models based on
the results of a study using several statistical tech-
niques such as transfer function modeling and
regression analysis. Although Iyer, et al.’s (2005)
study suggests that quantifying safety intervention
activities with the incident rate is beneficial in terms
of cost and fewer losses, further research is needed
to establish model reproducibility and its industry-
wide applicability.

Methodology
Data Collection

Data were collected on a weekly basis from
September 2003 to February 2005. They were then
entered in a spreadsheet (Table 1, p. 42). The safety
intervention variables are represented by factors A, B,
C and D. Factor A represents safety awareness and
motivation activities. Factor B represents skill develop-
ment and training activities. Factor C represents new
tools and equipment design methods and activities
while Factor D represents equipment-related activities.

The columns in the middle of Table 1 represent
the hours spent on each intervention variable by the
respective safety center within the forestry division
of a power company. The totals column represents
the sum of inputs of the various safety intervention

Research Objectives
The goal of the project is to forecast an

incident rate given a set of safety interven-
tion inputs using ANNs. To do so, the fol-
lowing objectives were established:

•Determine and develop the relation-
ship between safety interventions and the
incident rate from the forestry division of
a power company.

•Develop a forecasting tool using
ANNs that will be able to predict an inci-
dent rate based on the type and amount of
safety intervention activities.

The hypothesis is that ANNs are an
accurate predictor of incident rates.

As this study involves a new approach
to forecasting incident rates, no literature
exists to define what accuracy means.
Therefore, this term is defined as follows
in this study:

•absolute average percent error of less
than 20% (the average of the percent dif-
ference between predicted incident rate
and actual incident rate);

•mean absolute deviation (MAD) of less
than 1.0 (the mean of the absolute differ-
ence in the value of the predicted incident
rate and the actual incident rate);

•coefficient of determination (R2)
greater than 0.50 (the measure of strength of the
regression; this measures how much variation in the
model is due to the model itself versus how much
variation is unaccounted for).

Literature Review
The use of ANNs in a multifaceted society is not

a new concept, but its use as a means of evaluating
SH&E programs is a pioneering application.Accord-
ing to the literature, artificial intelligence has never
been used in an attempt to correlate, analyze or fore-
cast safety interventions with the incident rate. In
fact, except for Haight, et al. (2001a, b; 2003) and Iyer,
et al. (2004; 2005), research dealing with quantifica-
tion of safety interventions and the incident rate and
relationship modeling is minimal.

Guastello (1993) used regression analysis to relate
incident rates and intervention programs applied. He
evaluated the programs as though the whole program
was one intervention within each facility, meaning one
input was compared to one output; however, the
interactive effects between interventions were lost.
Guastello then realized that to determine the optimal
level of interventions, one must know all the interven-
tions that affect the incident rate as well as the interac-
tions among and between them.

Haight, et al. (2001a, b) presented an analytical
model that established a mathematical relationship
between all intervention activities being implemented
at the site and the incidents they were designed to pre-
vent. The model provided a tool to develop a quan-
tifiable design and to optimize an SH&E intervention.

Iyer, et al. (2004; 2005) developed a forecasting
model and optimization procedure to analyze as

Abstract: Current
research suggests that
it may be possible to
forecast incident rates.
Researchers are using
artificial neural net-
works to learn data
patterns associated
with safety program
and incident rate data.
In the study described
here, these predicted
rates are compared
with actual perform-
ance data over a 3-year
period. Researchers
were able to detect
indications of promise
in predicting incident
rates, given current
safety and health pro-
gram configurations.

Figure 1Figure 1

Representation of the Safety &
Health Program, Mathematical Model

Factor A:Awareness,
motivation, incentive
interventions, X1

Factor B: Safety, and
skill and craft training
and development
interventions, X2

Factor C:New tools
and equipment
design method inter-
ventions, X3

Factor D: Equipment
activities (e.g., inspec-
tions and preventive
maintenance), X4

Safety and health
program model Incident rate

Note. Adapted from “Intervention Effectiveness Research: Phase 1, Developing a Mathematical
Relationship Between Interventions and Incident Rates for the Design of a Loss Prevention System,”
by J.M. Haight, R.E. Thomas, L.A. Smith, et al., May 2001, Professional Safety, 46(5), p. 39.

Input (independent) Output (dependent)
Intervention application rate Incident rate
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In the validation phase, the
input data is only the inde-
pendent variables. The system
then predicts what the depend-
ent output will be; 25 weeks’
worth of data were used to pro-
vide adequate degrees of free-
dom for statistical significance.

No concrete rules exist
regarding the number of weeks
required for the two phases.
However, guidelines do exist
(Masters, 1993). One suggests
that the training set be repre-
sentative of the entire popula-
tion. Thus, the input data
entered during the training
phase must encompass the
range of incident rates dis-
played in the 62 weeks of data.
Also, no concrete rules define
network parameters; the only
guidelines are related to how
many hidden layers to use and
how many times to train the
network.

Furthermore, ANN training
capacity is partly based on the
amount of patterns input. The
fewer the data sets, the less
capable the system becomes
at formulating computational
models based on the informa-
tion given to it and vice versa.
Therefore, one needs to deter-
mine the correct mix of weeks

to input for the training phase and still have enough
weeks of data to produce a statistically significant
measure of ANN’s ability to forecast.

As noted, in this study, that mix involved 25 weeks
for validation and 37 weeks for training. ANN was
trained with 10, 20, 30 and 40 weeks prior to ending
up with 37. There was a tendency for the validation
results to improve as the training set size increased.
However, since this was not always the case, it is up
to the researcher’s discretion to determine a suitable
mix of training weeks to validation weeks.

The criteria used in this study was the mean
square error (MSE) and mean absolute deviation
(MAD). Note that for every set of weeks not used for
training, the remaining set of weeks were used for
validation. This is evident as ANN requires that the
training set be representative of the population so
that when testing or validating takes place outlier
data should be nonexistent. An example would be
having a trained ANN with incident rates ranging
from 1 to 10, then testing it with time spent on safety
interventions that produced an actual incident rate
within that range rather than an incident rate of 15.

Throughout the 62 weeks of data gathered, all
work centers involved in this study were not able to
submit data on their safety intervention activities
every week for various reasons. Therefore, a normal-

factors. The example presented shows only a frac-
tion of cost centers reporting. It should be noted that
tailboard conferences is a term used by the company to
refer to tailgate safety meetings.

After gathering an adequate amount of data (62
weeks’ worth were initially collected; this was sepa-
rated into training weeks and testing weeks) to pro-
ceed with a statistically significant study, the collection
phase ended. The next step involved systematically
organizing the data, which is explained in the next
section, so that they may be entered in ANN.

Data Organization for Use in ANN
In this phase, each of the 20 safety intervention

inputs were summed on a weekly basis and placed
in a separate spreadsheet.As noted, 62 weeks of data
were used due to the availability of that data. Of
those 62 weeks, 37 were used to train ANN and 25
weeks were used at the validation phase.

An ANN must first determine what the data pat-
tern is before it can recognize whether that pattern
exists in the data it uses to predict an outcome. This
is called training.During the training phase, a certain
number of data points are input in the system where
the system is given both independent and depend-
ent variables so that it can recognize the patterns. In
this case, 37 weeks’ worth of data were used.

Data were entered in
a spreadsheet. The
safety intervention
variables are repre-
sented by factors A,
B, C and D. Factor A

represents safety
awareness and moti-

vation activities.
Factor B represents

skill development and
training activities.

Factor C represents
new tools and equip-
ment design methods

and activities while
Factor D represents
equipment-related

activities.

Table 1Table 1

Data Sheet Used During Data Collection

Note. Example only. Adapted from “Intervention Effectiveness Research: Phase 1, Developing a Mathematical
Relationship Between Interventions and Incident Rates for the Design of a Loss Prevention System,” by J.M.
Haight, R.E. Thomas, L.A. Smith, et al., May 2001, Professional Safety, 46(5), p. 40; and “Intervention
Effectiveness Research: Understanding and Optimizing Industrial Safety Programs,” by P.S. Iyer, J.M. Haight,
T.B. Del Castillo, et al., 2004, Chemical Health and Safety, 11(2), pp. 9-19.

040_048_HaightFeature_0909:Layout 1 8/12/2009 8:48 AM Page 42

http://www.asse.org


www.asse.org SEPTEMBER 2009 PROFESSIONAL SAFETY 43

The equation below illustrates how MSE is calcu-
lated.

where: di, p equals desired output of output unit i for
input pattern p
ai equals observed output of output unit i
P equals total number of patterns in the data
set, while n equals the number of output units.

ized set of data had to be established. Normalization
consisted of data representing the entire population
of 400 workers or 24 cost centers used in this study.

It is important to note that the researchers
attempted to organize and input the data as a percent
of available work hours [similar to Iyer, et al. (2004)],
but ANN was not able to learn the data nor forecast.

Training & Forecasting
In this context, training refers to the act of feeding

ANN information and data, then running the pro-
gram in order to enable it to learn and assimilate that
information. In this case, the data are the week-to-
week quantified hours of input to the company’s
SH&E program, the independent variable, and the
incident rates, which are the output or dependent
variable. These data are input to allow the system to
recognize the pattern of incident rates that result
from the weekly variations in SH&E activities and
the percentage of available workhours applied to
their implementation.

Incident rates are sensitive to changes in SH&E
program activities and to the extent to which they
are implemented (Haight, et al., 2001a, b; 2003; Iyer,
et al., 2004; 2005). Therefore, it is reasonable to allow
ANN to determine variation patterns.

The term supervised learning refers to a process in
which the researcher gives ANN specific input pat-
terns with the correct network output, in this case,
the incident rate. During the supervised learning
phase, the researcher fed the system safety interven-
tion activity inputs with the corresponding output
or incident rate. Once ANN was able to fully learn
and assimilate the information, the researcher
moved to the validation phase, which is the fore-
casting stage of this research.

During the forecasting stage, the researcher per-
formed validation. The term validation learningmeans
that the network is not given any external indication
as to what the correct responses should be nor
whether the generated responses are correct. It is sim-
ply projecting an output or forecasting the incident
rate based on the data given to it on a weekly basis.
During validation, the system looks back on the vari-
ous input-output pairs that it learned during training
and it learns by the environment, that is, by detecting
regularities in the structure of input patterns.

ANN displays the validation results graphically
and numerically by comparing the forecasted results
to the actual using the MSE formula. The MSE
approach was chosen because it lies close to the cen-
ter of normal distribution; thus, if errors are
assumed to be normally distributed, minimizing the
MSE corresponds to other preferred optimizations.

Furthermore, the derivative of the MSE can be
easily computed relative to other performance meas-
ures. This signifies that when the optimization crite-
rion is the MSE, direct methods of optimizing
performance can be achieved. To calculate the MSE,
sum the squared differences between the predicted
output (ANN incident rate) versus the actual inci-
dent rate, then dividing by the number of compo-
nents (in this case weeks) that went into the sum.

Figure 2Figure 2

ANN Validation Output
Example of an ANN validation output with its correspond-
ing architecture {40,125,1}, {'logsig','purelin'} MSE = 142.7%
R2 = 0.05. This output shows the actual incident rate as the
target and the ANN predicted values—MSE or (mean
square error) is relatively high—predictions are not close.

Example of an ANN validation output with its correspond-
ing architecture {40, 125,15,1}, {'logsig','tansig','purelin'} MSE
= 76.8% R2 = 0.00. This output also shows the actual incident
rate as the target and the ANN predicted values, this time
using different network architectures. No correlation exists
between the two with an R = 0.0 and a better MSE than
above, but still is relatively high—predictions are not close.
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weeks was determined using a similar
approach to that detailed earlier. A 6-week
moving average similar to Iyer, et al. (2004)
was not performed due to lack of data,
which would have meant loss of degrees
of freedom and training strength, as well
as statistical significance of the results.

Results, Analysis & Discussion
Prelude to Results

To reach optimal performance of ANN,
the network architecture had to be modi-
fied. This led to varying results, so the net-
work that produced the best results
relative to other network runs was select-
ed. The selection was based on lowest
MSE and MAD.

Figure 2 (p. 43) displays the architecture
of the network with its corresponding out-
put. The first number in brackets refers to
the number of inputs in the input layer,
while the second number refers to the num-
ber of neurons associated with the activa-
tion function. In this study, the last number

will always be one as there is only one output function
(incident rate). In Figure 2, the notation {40,125,1}
refers to 40 inputs in the input layer, 125 neurons in the
hidden layer and one output. The activation function
in the hidden layer is logsig. ANN is the forecasting
capability and the target or actual is the incident rate
for that particular week.

As noted, an effort was made to input the data as
a percentage of available workhours but ANN was
not able to learn the data nor adequately predict re-
sults. It should also be noted that the network not
trained asANN was unable to learn the specific input
patterns and correlate it with the output given to it.

Lack of adequate training also leads to poor vali-
dation results. This phase of ANN is meaningless
without some form of training. The output should
attempt to correspond with what actually happened,
but in this instance it is insignificant as the system
could not be trained. After the attempt to use percent
of available workhours failed, data were input as total
hours. The total hours represent the sum of hours for
each cost center per safety intervention activity.

Forecasting Results & Analysis
After performing several runs and various ANN

architectures, the system was trained and 25 weeks
of safety intervention data were used for the valida-
tion phase. Figure 3 illustrates the finalized results.

The incident rates obtained fromANN were com-
pared to the actual in a pair wise tabulation (Table 2).
This comparison produced a residual result of a
-0.63, indicating that on average the forecasted
results tend to be lower than the actual incident
rates.Also, an average percent error of 55% indicates
that the forecasted results were not close to the actu-
al incident rates. Furthermore, the standard devia-
tion revealed a relatively low statistical dispersion as
the average standard deviation was 1.38.

Results may be improved by altering the architec-
tural structure of the network by changing the num-
ber of hidden layers, type of activation functions and
the number of neurons used. This is an iterative
process. Once enough iterations have taken place that
lower the MSE results without overtraining the net-
work, the results are finalized and the forecasting
stage of the research is concluded.

Although training the system is not an exact sci-
ence, reducing the number of hidden neurons helps
the system avoid idiosyncrasies. Also, increasing the
variety of the training set reduces the probability of
overtraining the system. However, one must
remember that training usually starts with random
initial weights and, thus, there is no exact science of
what constitutes adequate learning. Finally, statisti-
cal analysis is undertaken to support or refute the
hypothesis of whether ANN is an accurate predictor
of incident rates.

Moving Average
The moving average part of the research involved

all the steps mentioned in the previous sections with
one major difference: the inputs of 1 week were com-
pared to the average incident rates for the following
3 weeks (i.e., week 1 inputs were compared to the
incident rate for weeks 1, 2 and 3 since it is suggest-
ed that the effect from an SH&E program is neither
instantaneous nor permanent).

In this study, 40 inputs were entered into ANN
per week with a corresponding output. The corre-
sponding output was an average incident rate for
3 weeks, the week in which those 40 inputs originat-
ed from and the subsequent 2 weeks. The total num-
ber of weeks used in this part of the study is 58 weeks
due to data availability. The training phase involved
35 weeks, while the validation phase consisted of 23
weeks. The mix of training weeks to validation

Figure 3Figure 3

Forecasting Accuracy
of Neural Networks
MSE = 55.1% R2 = 0.13. After a significant amount of train-
ing for the ANN, the predicted incident rates versus actual
incident rates have improved, but not substantially or sta-
tistically significantly.
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MAD for the 25 weeks of forecasting was 1.63.
The result of 1.63 incidents per week means that the
predictions made by ANNs were on average within
the range of ±1.63 incidents of the actual values.
Also, a normal average comparison was done to see
whether simply taking the average incident rates of
25 weeks and projecting it on every week produced
better results than ANN. Table 3 (p. 47) presents a
summary of the results.

The results indicate that taking the average inci-
dent rate over the 25 weeks and comparing it to the
incident rate of each of the 25 weeks yields a better
MAD of 1.49 as opposed to 1.63 for ANN. On the
other hand, the absolute average percent error is far
higher when using the normal average incident rate at
75.9% as opposed toANN at 55.1%. The relative close-
ness between these results does not strengthen the
hypothesis ofANN being an accurate forecasting tool.

A regression analysis was performed to correlate
the number of hours of safety intervention activities

To analyze the distribution of the data, a
normality test was performed using the
Anderson-Darling normality test. Both
ANN and actual incident rates followed a
normal distribution since both their respec-
tive p-values were greater than 0.05. The
p value for ANN and actual were 0.867 and
0.096, respectively. As shown in Table 2, the
average of ANN incident rates was 3.13
compared to the 3.76 actual average rate.
That amounts to -16.9% error, which indi-
cates closeness among the means but further
tests such as a paired t-test need to per-
formed to verify this. Note that 55.14% is the
average percent error of all 25 weeks, while
the 16.9% corresponds with the percent error
of the means.

An F-testwas performed to determine the
ratio of two variances. If the two variances
are not significantly different, their ratio will
be close to 1. The resulting statistic was 0.551
and the associated p-value was 0.076. Since
p was not less than 0.05, it can be concluded
that there is no significant difference between
the two standard deviations with a 95% con-
fidence interval. This means there is no sig-
nificant variation between the population
means of ANN and the actual incident rates.

After determining a lack of significant
difference between the variances, a paired
t-testwas performed.Ap-value of 0.103 indi-
cates that a statistically significant difference
does not exist between the two means.

Also, a box plot of the analysis was per-
formed. Figure 4 (p. 46) illustrates the box
plot ofANN and the actual incident rate. The
box represents the middle 50% of the differ-
ences. The line through the box represents
the median difference. The lines extending from the
box represent the upper and lower 25% of the differ-
ences. The box plots of the data show the closeness in
the means of the two data sets.

Finally, to analyze the results, MAD was deter-
mined as the measure of accuracy; in addition, a plot
graph was created to display ANN forecasted inci-
dent rates versus actual incident rates (Figure 5,
p. 46). The plot indicates that ANN did not model
accurately as the resultant R2 was 0.13. Furthermore,
the points appear to be scattered rather than falling
on a straight line. If they were to fall on a straight line,
that would indicate that theANN forecasted incident
rates were linearly related.Also a Pearson correlation
test was performed to see whether the R2 value had
statistical significance. The test produced a p-value of
0.075, which is greater than 0.05, which indicates zero
statistical significance in its ability to correlate.

For MAD, the closer the value is to 0 the more
accurate one can claim that this prediction is. The
equation shown at right displays the manner in
which MAD is obtained where the sample size is N,
the samples have values xi, the mean is x and fi is an
absolute frequency. Furthermore, it shows the aver-
age deviation from the actual incident rates.

Pair-Wise Comparison Between
ANN & Actual Incident Rates

Residual Absolute
Week ANN Actual (difference) percent error

1 3.89 4.00 -0.11 2.70
2 2.64 4.00 -1.36 34.07
3 1.74 5.00 -3.26 65.17
4 3.32 4.00 -0.68 16.90
5 0.22 1.00 -0.78 78.34
6 3.35 3.00 0.35 11.62
7 1.60 1.00 0.60 60.30
8 1.65 5.00 -3.35 67.09
9 2.50 1.00 1.50 149.65
10 3.18 6.00 -2.82 46.94
11 3.39 7.00 -3.61 51.62
12 5.65 7.00 -1.35 19.22
13 5.03 3.00 2.03 67.79
14 2.05 1.00 1.05 104.96
15 4.80 5.00 -0.20 4.05
16 1.10 4.00 -2.90 72.58
17 2.49 5.00 -2.51 50.15
18 2.42 1.00 1.42 142.49
19 3.58 3.00 0.58 19.24
20 3.65 5.00 -1.35 27.07
21 4.09 2.00 2.09 104.48
22 3.31 4.00 -0.69 17.33
23 4.03 6.00 -1.97 32.88
24 5.90 3.00 2.90 96.66
25 2.59 4.00 -1.41 35.31
Average 3.13 3.76 -0.63 55.14

Table 2Table 2
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moving average, a pair-wise comparison was per-
formed. This comparison (Table 4, p. 48) produced a
residual result of a -0.122, indicating that on average
the forecasted results tend to be lower than the actu-
al incident rates. Also an average absolute percent
error of 27.2% indicates that the forecasted results
were relatively close to the actual incident rates.
Furthermore, the standard was 0.83. To determine
the distribution of the data, a normality test was
undertaken using the Anderson-Darling normality
test. Both ANN and actual incident rates followed a
normal distribution since both of their respective p-
values were greater than 0.05.

The p-value for ANN and actual were 0.082 and
0.367, respectively. As shown in Table 4, the average
of ANN incident rates was 3.68 compared to the
3.80, which is the average of the actual incident rate.
That amounts to a -3.2% error, which suggests close-
ness among the means but a paired t-test is needed
to verify this.

Next, an F-test was performed to determine the
difference of two variances. If the two variances are
not significantly different, their ratio will be close to
1. The resulting statistic was 0.590 and the associat-
ed p-value was 0.112. Since p was not less than 0.05,
it can be concluded that there is no significant differ-
ence between the two standard deviations with a
95% confidence interval.

After determining a lack of significant difference
between the variances, a paired t-testwas performed.
A p-value of 0.687 indicates that there is
not a statistically significant difference between the

two means as it
is far above the 0.05.
A box plot of the
analysis was per-
formed to go along
with the paired
t-test. Figure 7 (p. 48)
illustrates the box
plot for the moving
average of ANN
and the actual inci-
dent rate recorded.
Outliers are indicat-
ed by an asterisk.

Fu r t h e rmo re ,
MAD was calculated
for the 23 weeks
of forecasting; it
was 1.01, lower than
the 1.63 previously
calculated for a non-
moving average.
The result of 1.01
incidents per week
means that the
predictions made by
ANNs were on aver-
age within the range
of ±1.01 incidents of
the actual values.
Also a Pearson cor-

per week with the actual as well as the ANN fore-
casted incident rate. The resulting R2 for ANN was
0.03, which indicates poor correlating power.
However, the regression analysis performed for
actual incident rates with the number of hours
of safety intervention activities per week also pro-
duced a poor R2 value of 0.02. This indicates that the
data itself has poor correlation with the incident rate.
This may suggest that further studies involving
stronger correlation might yield better regres-

sion results when
using ANN.

Moving Average
As noted, the

moving average
analysis involved
comparing the in-
puts of 1 week to
the average inci-
dent rates for the
following 3 weeks.
Figure 6 displays
the optimized net-
work results of the
23 weeks of vali-
dation involving a
moving average.

To tabulate the
results of the fore-
casting accuracy
of ANN for the

Figure 4Figure 4

Box Plot of ANN &
Actual Incident Rates

Figure 5Figure 5

Comparison of ANN & Actual Incident Rates

The box represents
the middle 50% of

the differences. The
line through the box
represents the medi-

an difference. The
lines extending from

the box represent the
upper and lower 25%

of the differences.

040_048_HaightFeature_0909:Layout 1 8/12/2009 8:48 AM Page 46

http://www.asse.org


www.asse.org SEPTEMBER 2009 PROFESSIONAL SAFETY 47

relation test was performed to assess the statistical sig-
nificance of the R2 value. This produced a value of
0.639, which is greater than 0.05. This indicates zero
statistical significance in ANN’s ability to correlate
using a moving average.

A regression analysis was performed to correlate
the number of hours of safety intervention activities
per week with the moving average incident rate.
This was done for both actual and ANN forecasted
incident rate. The resulting R2 square for ANN was
0.100, which is a bit higher than the previous regres-
sion analysis performed without using a moving
average that yielded an R2 of 0.03. However 0.10
indicates poor correlating power. Also the moving
average regression analysis performed for actual
incident rates with the number of hours of safety
intervention activities per week produced a very
poor R2 value of 0.003.

Finally, a summary of the results comparing the
performance of ANN using a moving average as
opposed to not using one was tabulated (Table 5,
p. 48). The results indicate that a moving average
performs better than a direct week-to-week compar-
ison. This is due to a lower absolute average percent
error of 27.23, a lower MAD of 1.01 and a higher R2

of 0.1. However, this does not indicate that ANN is

an accurate forecasting tool; it
simply performs better with a
moving average.

Conclusion & Future Work
After performing the analy-

sis, the hypothesis that an
ANN is an accurate predictor

of incident rates must be rejected. The low
coefficient of determination of 0.10 and a
relatively high average percent error indi-
cates low statistical significance in accept-
ing the hypothesis. Furthermore, although
this study provided an example in which
ANN lacked statistical ability to correlate
safety intervention measures with the
incident rate, more research is needed to
determine whether ANN can be a tool for
forecasting incident rates.

The indicator that may show some
promise, or at least provide reason to pur-
sue further research, is the relatively small
percent error in comparing the overall
predicted average incident rate to the
actual overall average incident rate. While
this is not a strong measure, one could
surmise that with additional study, using
more data over a longer period, ANN will
perform better in predicting incident rates
as the frequency distribution of incident
rates more closely approximates normal
distribution.

It is also important to note that these
results are site specific and not applicable
industrywide. Some limitations exist with
ANNs, such as the exclusion of outlier

data and the system’s inability to extrapolate the
data. ANN effectiveness is as good as the data used
to train the system. That said, having an optimized
set of input variables can lead to productive results.

This study illustrated the lack of significant statis-
tical difference between the means and the variances
as shown by a paired t-test and F-test, respectively.
This does not mean that ANN has the potential to
become an accurate predictor of incident rates, but it
may prompt further studies and research. More
research is needed to gather more data and addi-
tional analysis in order to decrease the mean
absolute deviation by less than ±1.0 and improving
the results of regression analysis. Furthermore dif-
ferent ways of optimizing the data or inputting in
the ANN system might produce different results.

One thing is certain, if ANN becomes an accurate
predictor by having an MAD less than 1, an absolute
percent error of less than 25 and an R2 value of
greater than 0.5, it will unlock doors that will enable
companies, firms and businesses to minimize inci-
dent rates and safety-related costs by applying the
appropriate mix of inputs. If ANNs can show poten-
tial for this occurrence, time, injuries and costs can
be reduced. �

Normal Average Comparison
This table summarizes the results of a normal average comparison to
determine whether simply taking the average incident rates of 25 weeks
and projecting it on every week produced better results than ANN.

Average
Mean percent error MAD

ANN 3.13 55.14 1.63
Direct IR Average 3.76 75.86 1.49

Table 3Table 3

Figure 6Figure 6

Forecasting Accuracy of
ANN for Moving Average
MSE = 27.2% R2 = 0.01. ANN predicted incident rates ver-
sus actual incident rates (post-training and validation).

(References appear on page 48)
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Pair-Wise Comparison Between
ANN & Actual Incident Rates
for a Moving Average

Residual Absolute
Week ANN Actual (difference) percent error

1 3.905 4.333 -0.428 9.882
2 4.329 4.333 -0.004 0.095
3 4.467 3.333 1.134 34.010
4 3.385 2.667 0.718 26.919
5 2.994 1.667 1.327 79.616
6 4.014 3.000 1.014 33.803
7 2.647 2.333 0.313 13.426
8 3.471 4.000 -0.529 13.218
9 2.920 4.667 -1.747 37.426
10 2.992 6.667 -3.675 55.122
11 3.142 5.667 -2.525 44.555
12 3.644 3.667 -0.023 0.626
13 3.758 3.333 0.425 12.740
14 2.456 3.667 -1.210 33.013
15 3.688 5.000 -1.312 26.248
16 3.056 3.333 -0.277 8.314
17 6.392 3.000 3.392 113.067
18 3.139 3.000 0.139 4.637
19 4.273 3.333 0.939 28.184
20 4.200 3.667 0.533 14.537
21 4.279 4.000 0.279 6.983
22 3.148 4.333 -1.185 27.354
23 4.227 4.333 -0.106 2.454
Average 3.675 3.797 -0.122 27.227

Table 4Table 4 Figure 7Figure 7

Box Plot of ANN
& Actual Incident Rates

Summary of ANN Results
This table summarizes the results comparing the performance
of ANN using a moving average as opposed to not using one.

Average
Residual percent error MAD R2

Direct -0.63 55.14 1.63 0.03
Moving -0.122 27.23 1.01 0.1
average

Table 5Table 5

On average the fore-
casted results tend to

be lower than the
actual incident rates.
The average absolute

percent error rate
indicates that the
forecasted results

were relatively close
to the actual

incident rates.
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