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VVISIBLE LIGHT IS ALL AROUND US, from sunlight to street 
lighting and automobile headlights to the backlight on a 
smartphone and in nearly every indoor space. Humans 
are so accustomed to working and living in artificial 
light that many of us have not stopped to consider the 
implications. Most OSH professionals’ experience with 
light and artificial lighting is likely limited to assessing 
whether sufficient light exists for people to see where 
they are going or carry out a task, or whether a light is 
too bright. This article aims to provide a current review 
of lighting for OSH professionals. Such a review is timely 
due to emerging issues including energy efficiency, human 
health impacts (e.g., blue light hazard, circadian rhythm 
disruption, fatigue), human performance (e.g., visual 
performance, visual comfort) and environmental impacts 
(e.g., light pollution).

Visible Light
The visible light spectrum (VLS) is typically considered 
the portion of the electromagnetic spectrum from ap-
proximately 400 to 700 nm wavelength (Figure 1; Elert, 
2019; IUPAC, 1997). The colors range from violet (~400 to 
450 nm), blue (~450 to 500 nm), green (~500 to 550 nm), 
yellow (~550 to 600 nm), orange (~600 to 650 nm) and red 
(~650 to 700 nm). However, there can be some significant 
variation in exact wavelength ranges reported for colors 
(Elert, 2019; Helmenstine, 2020; Jones, 2020). The radiant 
energy of light is characterized by the direct relationship 
with frequency (Brune, 2020); that is, the shorter wave-
length range of the VLS (e.g., violet/purple) has more 
intrinsic energy than longer wavelengths (e.g., red). The 
radiant flux (power) of a light source is a function of the 
frequency of the emitted radiation and time over which 
the energy is transmitted (DiLaura, Houser, Mistrick et 
al., 2011; Sliney, 2016).

Lighting Units & Definitions
Common light sources currently used in commercial 

and industrial applications include incandescent, fluores-

cent, high intensity discharge (metal halide and sodium 
vapor) and solid state lighting (SSL) [e.g., light-emitting 
diodes (LED) and organic LED; Table 1, p. 24]. Lighting 
metrics are used to predict and compare how a lighting 
system will behave. Luminaires (lighting fixtures) can be 
characterized by many metrics, including the total quan-
tity and directional intensity, visual color appearance and 
brightness, and electrical and fixture efficiency (ANSI/
IES, 2017; DiLaura et al., 2011; Rea, 2013). An important 
point is that some metrics can be classified depending on 
them having a radiometric or a photometric basis. Radio-
metric quantities are associated with measurements of 
radiant energy and power. Photometric quantities were 
developed to measure light in a manner consistent with 
the human eye’s vision by using, for example, the Interna-
tional Commission on Illumination (CIE) 1924 photopic 
(P) luminosity [V(λ)], or the CIE 1951 scotopic (S) lumi-
nosity [V (̀λ)] functions (CIE, 2011; Figure 2, p. 24). Table 
2 (p. 26) provides additional key metrics used to charac-
terize lighting.

Although the photopic luminosity function is known 
to underestimate the contribution of short wavelength 
light to perceived illuminance (Rea, Figueiro, Bierman 
et al., 2012), lumens and lux remain widely used lighting 
metrics. This issue has important implications because 
the relative proportions of the spectral power distribution 
(SPD) for LEDs are different from incandescent or flu-
orescent light or sunlight (Figure 3, p. 27). Illuminating 
Engineering Society (IES, 2013) has published a technical 
memorandum (TM-24-13) that provides a method to 
factor in the differences in SPD from various luminaires 
while still achieving similar apparent light levels (also 
referred to as visually equivalent lumens) within a space. 
The formula used in TM-24-13 factors in these contribu-
tions through the use of the S/P ratio, which is the ratio 
of the scotopic (S) lumens/photopic (P) lumens. Practi-
cally, LEDs typically have higher S/P ratios than the light 
source being replaced, allowing designers to reduce the 
total lumens required in the system.

The OSH professional should also consider that two 
light sources can have similar correlated color tempera-
ture (CCT) and color rendering index (CRI) while having 
vastly different SPDs. As a result, a standard (photo-
metric) light meter alone cannot provide the necessary 
expanded metrics required to make an informed decision 
regarding lighting from LEDs (Ferrero, Velázquez, Pons 
et al., 2018; Nilsson, 1981). Therefore, a spectroradiometer 
(often incorrectly referred to as a spectrometer) is re-
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quired in lieu of the photometric light meter that the OSH 
professional typically utilizes (CIE, 2011). Spectroradiom-
eters are more complicated instruments and are typically 
more expensive than photometers (ScienceDirect, 2019).

Lighting Standards & Regulations
In 2019, the U.S. Energy Information Administration 

(EIA, 2019) estimated that about 6% of total U.S. elec-
tricity consumption is used by lighting in the residen-
tial and commercial sectors. Although currently being 
reviewed, the second phase of the U.S. Energy Inde-
pendence and Security Act was scheduled to take effect 
Jan. 1, 2020 (Energy Independence and Security Act of 
2007). While the standards are technology neutral, the 
required 25% increase in lighting energy efficiency for 
general service lamps in the 40 to 100 W range would 
serve only to increase the adoption of LEDs. Regardless 
of the outcome, it is not expected to have an impact on 
the long-term adoption of LEDs. The Clean Energy for 
All Europeans package of legislative acts directs EU 
countries to transpose the set of new energy directives 
into national law with the next 2 years (EU, 2019). These 
include the Energy Performance of Buildings Directive 
Update of 2018 that sets a target of all new buildings to 
be nearly net zero energy by 2020 resulting in adoption 
of new lighting technologies (EU, 2018).

The U.S. has few national legal requirements for light-
ing levels beyond OSHA (2011a;b) requiring minimum 
illuminance related to avoiding slips, trips and falls, and 
safe egress routes and exit lighting. In response, lighting 
systems in the U.S. are typically designed following var-
ious adopted codes, standards and guidelines based on 
jurisdiction or organization policy. The acceptable met-
ric values within these codes, standards and guidelines 
provided by IES and other organizations (e.g., Canadian 
Center for Occupational Health and Safety, CCOHS) are 
typically categorized based on building type or task. In 
contrast, national level legislation, codes, standards and 
guidelines such as Energy Policy Act of 2005; Energy In-
dependence and Security Act of 2007; American Society 
of Heating, Refrigerating and Air-Conditioning Engi-
neering (ASHRAE) standards 90.1-2016 and 189.1-2017 
focus on specifying lighting watts/area or lumens/watt 
based on area usage or luminaire type. 

Useful lighting concepts and standards can obtained 
from a number of organizations including the U.S. De-
partment of Energy, ASHRAE, CIE, IES, U.S. Green 
Building Council, International WELL Building Institute, 

CCOHS, EPA Energy Star Program, American Council of 
Governmental Industrial Hygienists (ACGIH) and Inter-
national Commission on Non-Ionizing Radiation.

Anatomy of the Eye
The two primary vision related photoreceptor cells 

found in the eye include about 40 million cones and 100 
million rods (DiLaura et al., 2011) with differing sensi-
tivities to the VLS. The cones function at higher illumi-
nation levels initiating photopic vision, while the rods 
function at lower light levels initiating scotopic vision. 
The two receptors work together over a range known as 
the mesopic region (Barbur & Stockman, 2010). Three 
classes of cones exist: long wavelength (L type), medium 
wavelength (M type) and short wavelength (S type) with 
peak photopigment sensitivities of 575, 525 and 450 nm, 
respectively (DiLaura et al., 2011). The fovea is densely 
packed with L- and M-type cones, giving the center of 
the eye the best visual acuity (i.e., the spatial resolving 
capacity of the visual system) and color differentiation 
(DiLaura et al., 2011). S-type cones, which are not usually 
found in the fovea, and rod photoreceptors dominate the 
periphery regions (DiLaura et al., 2011). Rods are more 
than 1,000 times as sensitive to light as cones and act as a 
much better motion sensor. For the OSH professional, the 
two major implications are 1) tasks requiring higher levels 
of target detection, recognition or localization need high-
er illumination levels (Kalloniatis & Lu, 2007); and 2) at 

FIGURE 1
RELATIONSHIP OF VISIBLE SPECTRUM  
TO ELECTROMAGNETIC SPECTRUM

Note. Reprinted from EM spectrumrevised.png (File), by P. Ronan, 2013.
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typical indoor lighting levels the rods are saturated, which 
can be a major safety hazard when going from higher to 
lower lighting levels (e.g., indoors to outdoors) as it takes 
time for the rods to begin to function. A third class of 
non-vision-related photoreceptor called an intrinsically 
photosensitive retinal ganglion cell (ipRGC) was formally 
identified in 2002 (Hattar, Liao, Takao et al., 2002). How-
ever, their existence was alluded to in research on mice 
dating back to the 1920s (Keeler, 1928). 

Physiological & Psychological Impacts
The photochemical risk of short-wavelength radiation 

(~400 to 500 nm) is collectively referred to as blue light 
hazard. This consists of three major effects: 1) retinal 
burns; 2) cataracts; and 3) macular degeneration (some-
times referred to as age-related macular degeneration; 
Neelam, Au & Zhou, 2014; Sliney, 1994). Light sources 
utilizing the blue light portion of the VLS have caused 

retinal damage and cell death in albino rats (Lougheed, 
2014) and lesions in the human eye (Ham, Mueller & 
Sliney, 1976). In response, retinal photochemical injury 
weighting functions (with maximum responses at 435 
to 440 nm) were established to protect against blue light 
hazard (ACGIH, 2001; Ham, 1983; ICNIRP, 2013; Lund, 
Stuck & Edsall, 2006; Sliney, 2016) with corresponding 
exposure limits established (Figure 2). For most OSH 
professionals, the blue light hazard exposure guidelines 
have only been of concern in specific limited operations 
such as welding or dental curing (Briggs, Parker, Miller et 
al., 1992; Council on Dental Materials, Instruments and 
Equipment, 1986; Okuno, Ojima & Saito, 2010). Although 
LEDs have an increased relative amount of shorter wave-
length light, CIE (2019) has issued a position statement 
indicating that it does not expect blue light hazard to be a 
major issue with LED replacements. However, reports in 
the scientific literature demonstrate that replacement LED 
fixtures can result in exceedance of the blue light hazard 
exposure guidelines (Leccese, Vandelanotte, Salvadori et 
al., 2015) and other issues (Mou & Peng, 2013; O’Hagan, 
Khazova & Price, 2016; Point, 2018; Rebec, Klanjšek-Gun-
de, Bizjak et al., 2015).

The suprachiasmatic nucleus located in the hypothal-
amus plays a pivotal role in regulating daily oscillations 
of organ functions (including melatonin production) and 
synchronizing them to day and night body states (Gillette 
& Tischkau, 1999). This near 24-hour sleep-wake cycle is 
referred to as the body’s circadian rhythm. Several stud-
ies from the 1980s to present have shown that the setting 
of the circadian rhythm is impacted by the ipRGCs’ re-
sponse to light (Crowley, Lee, Tseng et al., 2003; Pauley, 
2004; Pickard & Sollars, 2010; Sollars & Pickard, 2015; 
Wahl, Engelhardt, Schaupp et al., 2019). These ipRGCs 
account for less than 1% of all ganglion cells and have 
peak sensitivities to light between 459 and 484 nm (Bed-
rosian & Nelson, 2013). Subsequently research has shown 
that several types of ipRGC exist with slightly different 
responses (Stabio, Sabbah, Quattrochi et al., 2018). These 
cells are an area of ongoing research. The absence of a 
light/dark cycle or a distinct noncyclical event (e.g., jet lag, 
shift work) can cause circadian rhythm disruption leading 
to a misalignment between physiology, behavior and the 

FIGURE 2
RELATIVE RESPONSE FUNCTION

Relative response functions for V(λ), V’(λ), melanopic lux, circadian rhythm 
stimulus and blue light hazard.

TABLE 1
COMMON LIGHTING TYPES 

Note. Adapted from “LED Lighting Efficacy: Status and Directions,” by Morgan Pattison, Hansen, & Tsao, 2018; “LED efficacy: What America stands 
to gain,” by U.S. DOE, 2017.

Luminaire type  Efficacy  CRI rating  CCT range  Average lifetime  
Incandescent  15 lm/W  95  2500 K 1,000 hours  
High-
intensity 
discharge  

Metal 
halide  

70 to 115 lm/W  65 to 90  3000 to 4200 K 5,500 to 20,000 hours 

High-
pressure 
sodium  

50 to 125 lm/W  25  1900 to 2100 K 16,000 to 24,000 hours 

Fluorescent  Compact  65 to 70 lm/W  77 to 88  2700 to 6500 K  8,000 to 10,000 hours 
T5 HO  92 to 108 lm/W  50 to 95  2700 to 6500 K  30,000 hours 
T8  92 to 95 lm/W  50 to 95  2700 to 6500 K  30,000 hours 

Induction  70 lm/W  80 to 90     ≥ 100,000 hours  
LED current (phosphor-
converted) 

160 to 170 lm/W (current) 
255 lm/W (future) 

90     ≥ 50,000 hours 

LED future (color mixed) 350 lm/W       
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environment (Bedrosian & Nelson, 2013). Singular events 
of circadian rhythm disruption can result in short-term 
fatigue. Fatigue has been linked to many OSH incidents 
and worker performance issues (Filtness & Naweed, 2017; 
Lerman, Eskin, Flower et al., 2012; Marcus & Rosekind, 
2017; McCormack, O’Shea, Doran et al., 2018). Over-
all, the nonvisual effects of lighting are beginning to be 
recognized as important factors to be considered as the 
impacts can be recorded at relatively low light levels, in-
cluding from electronic devices (Figueiro & White, 2013; 
Kozaki, Kubokawa, Taketomi et al., 2016; Stevens & Zhu, 
2015; Vartanian, Li, Chervenak et al., 2015). Currently, 
two principal metrics are used to characterize the impacts 
of light on human circadian rhythms (Figure 2): the cir-
cadian rhythm stimulus (Rea, Figueiro, Bierman et al., 
2012) and melanopic lux (Enezi, Revell, Brown et al., 2011; 
Lucas, Peirson, Berson et al., 2014). 

Although exposure of humans to light can be benefi-
cial for photo entrainment, long-term exposure to light 
at night can result in long-term circadian rhythm dis-
ruption, which has other potential impacts. This disrup-
tive method is of unique importance to the roughly 20% 
of the worldwide population that is involved in night 
shift work (Bedrosian & Nelson, 2013). Shift work has 
previously been classified by International Agency for 
Research on Cancer (IARC, 2007) as Group 2A, proba-
bly carcinogenic to humans. Although light at night is 
not definitively connected to night shift work, night shift 
work specifically was recently classified in Group 2A 
(IARC Monographs Vol. 124 Group, 2019). Of particular 
concern regarding this issue are the potential heightened 
circadian rhythm disruption impacts of LED-based light 
at night. OSH professionals must understand that light-
ing choices go deeper than cost savings. OSH profes-
sionals must understand the important considerations 
involving light exposure and how it can have beneficial 
or detrimental impacts on human health and perfor-
mance. The specific effects depend on many factors in-
cluding prior light exposure history, hours awake, time 
of day, SPD, duration and intensity. Workers, especially 
night shift workers, must be educated on this issue and 
proper precautions must be taken to ensure that shift 
workers have proper sleeping conditions. 

Another lighting impact of increasing concern is light 
pollution (Chepesiuk, 2009; Falchi, Cinzano, Duriscoe 
et al., 2016; Tähkämö, Partonen & Pesonen, 2019). More 
than 99% of individuals living in the U.S. and Europe, 
and 80% of the world population experience nighttime 
light pollution (Falchi et al., 2016). Light pollution can 
come from many sources, including streetlights, interi-
or lighting, or the use of computers, televisions or cell 
phones. As light and dark often signals when to eat, sleep, 
hunt, migrate or reproduce, light pollution can have many 
negative effects on humans, flora and fauna (Aubé, 2015; 
Deynego, Elizarov & Kaptsov, 2016; Ouyang, Davies & 
Dominoni, 2018; Tähkämö et al., 2019). 

In addition to the physiological impacts of light, psy-
chological impacts also must be considered. Not only do 
ipRGCs communicate with the suprachiasmatic nucleus, 
their signals also reach the prefrontal cortex, hippocam-
pus and amygdala, all of which are areas involved in 
mood regulation (Bedrosian & Nelson, 2013; Fernandez, 

Fogerson, Lazzerini Ospri et al., 2018). Circadian rhythm 
disruption has also been shown to have psychological 
connections such as mood fluctuations (Haynes, Gengler 
& Kelly, 2016; Lockley, Dijk, Kosti et al., 2008), fatigue 
(Caldwell, Caldwell, Thompson et al., 2019), insomnia 
(Figueiro & White, 2013; Smolensky, Hermida, Reinberg 
et al., 2016), lack of appetite (Poggiogalle, Jamshed & Pe-
terson, 2018) and generally impaired performance (Figue-
iro, Sahin, Wood et al., 2016; Naismith, Hickie, Terpening 
et al., 2014).

Productivity
When utilized properly, lighting choices can also pro-

duce benefits beyond those associated with visual acuity. 
Using lights with higher CCTs can improve employees’ 
feelings of well-being and boost overall productivity 
(Mills, Tomkins & Schlangen, 2007; Price, Udovicic, Beh-
rens et al., 2019). In addition, other studies have demon-
strated positive influences on depressive symptoms, 
alertness, psychomotor vigilance and task performance 
(Askaripoor, Motamedzade, Golmohammadi et al., 2019; 
Mills et al., 2007). While short wavelengths can promote 
alertness by suppressing melatonin production, it has also 
been shown that a 630 nm light can produce a wakeful-
ness response (Sahin & Figueiro, 2013).

Temporal Light Modulation Effects
Temporal light modulation (TLM), known colloquially 

as flicker, refers to the temporal pattern of light output. 
TLM in light sources is a function of 1) electrical input 
voltage fluctuation; 2) technology type (e.g., LED vs. 
incandescent); 3) power source technology (e.g., driver, 
ballast); 4) light regulation (e.g., dimmers); and 5) visible 
light communication technologies (e.g., LiFi). Currently, 
there is wide variation in TLM among luminaires. TLM 
is known to affect human visual perception, neurobiology 
and performance, sometimes in adverse ways (CIE, 2016b; 
2017; Jaen, Sandoval, Colombo et al., 2005). Undesired 
effects in visual perception of TLM are referred to as tem-
poral light artifacts (CIE, 2016b). CIE (2016b) identifies 
three major types of temporal light artifacts: flicker, stro-
boscopic effect and phantom array effect, often referred to 
as ghosting.

Without proper ballasts, drivers or capacitors, a light 
source will exhibit flicker (Lau, 2014). When light flickers 
at a frequency greater than 50 Hz, most people cannot dis-
tinguish between individual flickers; however, the sensory 
system of some individuals can still detect flicker (ASSIST, 
2012; Lau, 2014). Flicker is associated with eye strain and 
fatigue. A common office complaint associated with flick-
er is headaches (Karanovic, Thabet, Wilson et al., 2011), 
however, seizures can be induced in sensitive individuals 
(Smedley, Webb & Wilkins, 2010; Wilkins, Veitch & Leh-
man, 2010). When the flicker frequency is from 100 to 500 
Hz, it is possible to encounter a stroboscopic effect when 
working with rotating machinery, which causes it to ap-
pear stationary or rotating at a slower speed (Poplawski & 
Miller, 2013). This could have safety implications in a work-
place. The phantom array effect was recently recognized 
and is primarily visible in outdoor nighttime situations 
where high contrast is present. Currently, the two most 
common metrics for TLM are percent flicker and flicker 
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index (CIE, 2011). Flicker index (Eastman & Campbell, 
1952) is most commonly used, and indicates the amount 
of modulation (reduction) in light output over a single on/
off cycle. A value of 100% would indicate that at some point 
in the cycle there is no light, while a value of 0 would indi-
cate a completely steady source (Bullough & Marcus, 2015; 
Eastman & Campbell, 1952). Pacific Northwest National 
Laboratory (PNNL, 2016) has published information on 
characterizing flicker (Poplawski & Miller, 2011; 2013) and 
more recently a performance review of some currently 
available handheld flicker meters (PNNL, 2018). Other 
measurement metrics for TLM include modulation depth 
(CIE, 2016b), short-term-flicker indicator (also called short-
term flicker severity; CIE, 2016b) or short-term flicker 
perceptibility (Synergy Systems, 2019), long-term flicker 
perceptibility (Synergy Systems, 2019) flicker visibility 
measure (Perz, Sekulovski, Vogels et al., 2017) and the 
time domain flicker visibility measure (Perz, 2019). For the 
OSH professional, TLM will primarily be of concern due to 
flicker, especially in an office environment or heavily com-
puterized environment, and the stroboscopic effect around 
moving machinery.

Glare
The term glare refers to a bright surface or object in the 

field of view. There are two common types of glare (CIE, 
2011; Yang, Luo & Huang, 2018a;b; Yang, Luo & Ma, 2017; 
Yang, Luo, Ma et al., 2017). Disability glare results in tem-
porary visual impairment caused by intense light sources 
in the field of view (Epitropoulos, Fram, Masket et al., 

2015; Patterson, Bargary & Barbur, 2015). Discomfort 
glare is a subjective feeling of discomfort due to excessive 
contrast in the field of view. One of the most common 
examples of glare is from streetlights, but it is not limited 
to outdoor situations. Glare is typically measured with 
luminance meters or luminance cameras (Aslam, Haider 
& Murray, 2007). Recent advances in sensor technologies 
have allowed digital cameras to also be used for measure-
ment (Hsu, Chen & Jiaan, 2012). There are several mea-
sures of glare, with CIE (1995) recommending the unified 
glare rating (UGR) as a quantitative measure of glare 
(Scheir, Hanselaer & Ryckaert, 2017). Other glare calcula-
tion methods include CIBSE glare index (CLEAR, 2020a), 
IES glare index (CLEAR, 2020b; Robinson, Bellchambers, 
Grundy et al., 1962) and the daylight glare index (Kent, 
Fotios & Altomonte, 2019). California’s Building Energy 
Efficiency Standards (Title 24, Part 6; CEC, 2019) specifies 
a maximum lumens rating for backlight, uplight and glare 
based on IES (2011) TM-15-11. For the OSH professional, 
the primary implication is reducing contrast between illu-
mination levels in the field of view.

Dynamic Lighting
In general terms, dynamic lighting refers to changing 

light source characteristics (e.g., intensity, SPD, CCT, 
distribution of light) based on the needs of the environ-
ment (CIE, 2016a). This emerging field is also referred to 
as tunable-dimmable, smart lighting, intelligent lighting, 
spectral tuning, circadian lighting, health and well-being 
lighting and human-centric lighting. OSH professionals 

TABLE 2
RADIOMETRIC & PHOTOMETRIC LIGHTING TERMS/METRICS

Note. Shaded terms denote radiometric quantities.

Term  Definition  Unit  
Radiant intensity The radiant flux per unit solid angle W/sr 
Radiant flux Total radiant energy per unit of time W 
Radiant efficiency Ratio of radiant flux to power consumed Unitless 
Luminous intensity  The luminous intensity, in a given direction, of a source that emits 

monochromatic radiation of frequency 540 x 1012 hertz and that has a 
radiant intensity in that direction of 1/683 W per steradian (sr) 

Candela (cd) 1 cd = 1/683 
W/sr  

Luminous flux  The amount of light emitted per second in a unit solid angle of one 
steradian from a uniform source of one candela 

Lumen (lm) = cd·sr  

Illuminance  The area density of the luminous flux from a source divided by the area 
over which the flux is received 

lux (lx) = lm/m2 (foot-
candle) 

Luminance  The intensity of light emitted from a surface per unit area in a given 
direction 

Cd/m2  

Lumen maintenance/ 
lamp lumen depreciation 
(LLD) factor  

A ratio of the mean lumens over the lifetime compared to initial lumen 
output of a given lamp 

LLD = mean lumens/ 
initial lumens 

Luminous source efficacy  The total luminous flux emitted by the total luminaire versus power input lm/W  
CCT CCT is the absolute temperature a blackbody has when it has 

approximately the same color appearance as the source. CCT rating for a 
lamp is a general “warmth” or “coolness” measure of its appearance 

Kelvin (K). Typically 
between 2000K (warm) and 
6500K (cool) 

Color rendering index (CRI)  A measure of a light source’s ability to show object colors realistically or 
naturally compared to a familiar reference source such as daylight 

Scale of 0 to 100, 100 being 
perfect rendering  

Spectral power distribution 
(SPD)  

The collective data of radiant power emitted by a light source at each 
wavelength or band of wavelengths in the visible region of the 
electromagnetic spectrum 

Unitless (relative) or W/cm2 
(absolute) 
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should note that the term adaptive lighting is also some-
times used, but this term is best reserved for describing 
automobile headlights (UNECE, 2019), as the term’s use 
in the U.S. dates back to the 1960 Citroen DS (Perkins, 
2015). Dynamic lighting is gaining interest among man-
ufacturers, researchers and standards bodies as a method 
to increase lighting efficacy and manage light exposure 
for maximum benefits. Dynamic lighting is often char-
acterized as mimicking the natural rhythm of night and 
day lighting conditions that the body naturally responds 
to. For example, a dynamic light system could be used in 
night shift settings to reduce worker exposure to blue light 
as the shift nears the end, while keeping workers awake 
and supporting circadian function by utilizing other 
VLS regions. Before implementing any dynamic lighting 
scheme in the workplace, OSH professionals are cau-
tioned to ensure that the project team includes the proper 
expertise and that empirical evidence exists to support 
any vendor claims. 

Conclusion 
The adoption of LED is ever growing; therefore, OSH 

professionals must update their knowledge on the char-
acteristics of this light source and its potential impli-
cations. Understanding lighting in 2020 requires more 
than just preventing slips, trips and falls, and providing 
exit lighting and visibility for safe egress routes. With 
greater understanding of the impacts of lighting on 
humans and the environment (e.g., circadian rhythm 
disruption, light at night) several new metrics have been 
developed, many of which require the measurement of 
the luminaire’s SPD. This is achieved using a spectro-
radiometer instead of the basic photometric light meter 
that has been the standard instrument used by OSH 
professionals in the past. The confluence of lower cost 
LEDs, development of Internet of Things technologies 
and advances in the understanding of VLS on humans 
translates to the potential wide adoption of dynamic 
lighting systems in the near future. For OSH profession-
als, this provides both opportunities and challenges, as 
the lighting system characteristics in a workplace can 
easily change without undergoing a thorough internal 
review, which can result in worker complaints, reduced 
productivity and other unintended consequences.  PSJ
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